Just another WordPress.com weblog

Archive for the ‘Differential Geometry’ Category

Calculation of Gaussian Curvation via Connection Forms

In this article, I am going to calculate the Gaussian curvature via connection forms.

Suppose that X:D\to \Sigma is a local parametrization on a surface \Sigma in \mathbb{R}^{3} so that X=X(u,v) is an orthogonal coordinate system, which means that the tangent vectors X_{u} and X_{v} are orthogonal at each point of \Sigma. Here D is an open subset of \mathbb{R}^{2}. The first fundamental form on \Sigma are given by the following three functions: E=\langle X_{u},X_{u}\rangle, F=\langle X_{u},X_{v}\rangle=0, G=\langle X_{v},X_{v}\rangle.  Here \langle\cdot,\cdot\rangle denotes the induced metric on \Sigma.

Let \displaystyle E_{1}=\frac{X_{u}}{\sqrt{E}} , \displaystyle E_{2}=\frac{X_{v}}{\sqrt{G}}. Then \{E_{1},E_{2}\} forms an orthonormal frame on X(D). Suppose that \{\theta^{1},\theta^{2}\} is the dual coframe to \{E_{1},E_{2}\}.  Then we know \theta^{1}=\sqrt{E}du, \theta^{2}=\sqrt{G}dv. Let \omega_{1}^{2} denote the connection one form on \Sigma. Then

\displaystyle d\theta^{1}=\omega_{2}^{1}\wedge\theta^{2}=-\frac{\sqrt{E}_{v}}{\sqrt{G}}du\wedge\theta^{2},

 \displaystyle d\theta^{2}=-\omega_{2}^{1}\wedge\theta^{1}=-\frac{\sqrt{G}_{u}}{\sqrt{F}}du\wedge\theta^{1}.  

We obtain that 

\displaystyle\omega_{1}^{2}=-\frac{\sqrt{E}_{v}}{\sqrt{G}}du+\frac{\sqrt{G}_{u}}{\sqrt{F}}dv.

The Gauss-Codazzi equation tells us that 

d\omega_{1}^{2}=-K\theta^{1}\wedge\theta^{2}.

Hence

\displaystyle K=-\frac{1}{2\sqrt{EG}}\left\{\frac{\partial}{\partial u}\frac{\sqrt{G}_{u}}{\sqrt{EG}}+\frac{\partial}{\partial v}\frac{\sqrt{E}_{v}}{\sqrt{EG}}\right\}.

As an application, let us calculate the Gaussian curvature when the coordinate system is isothermal. Recall that a coordinate system (u,v) on a surface \Sigma is called isothermal if there exists a smooth function \lambda=\lambda(u,v) so that E=F=\lambda^{2}. Then we can show that

\displaystyle K=-\frac{\Delta\log\lambda}{2\lambda^{2}}.